LeetCode 5. 最长回文子串
算法就是解题方案的准确而完整的描述,是一系列解决问题的清晰指令。一些大厂经常会考察面试者算法能力,观察面试者编码的熟练程度、思考的速度和深度,以此衡量面试者的能力和潜力,所以算法重要性不言而喻。想进大厂,就必须拿下算法,而算法学习,就是要不断地练习。为了帮助大家提升算法能力,我将带大家每天做一道算法题!
今天的题目是最长回文子串(Longest Palindromic Substring),比较容易的解法是动态规划。
题目
1 | /** |
题解
方法一:动态规划
思路及算法
对于一个子串而言,如果它是回文串,并且长度大于 22,那么将它首尾的两个字母去除之后,它仍然是个回文串。例如对于字符串 “ababa”,如果我们已经知道 “bab” 是回文串,那么 “ababa” 一定是回文串,这是因为它的首尾两个字母都是 “a”。
根据这样的思路,我们就可以用动态规划的方法解决本题。我们用 P(i,j) 表示字符串 s 的第 i 到 j 个字母组成的串(下文表示成 s[i:j])是否为回文串:
- P(i,j) = true, 如果子串 Si … Sj 是回文串
- P(i,j) = false, 其它情况
这里的「其它情况」包含两种可能性:
- s[i,j] 本身不是一个回文串;
- i>j,此时 s[i,j] 本身不合法。
那么我们就可以写出动态规划的状态转移方程:
- P(i,j)=P(i+1,j−1)∧(Si ==Sj)
也就是说,只有 s[i+1:j-1] 是回文串,并且 s 的第 i 和 j 个字母相同时,s[i:j] 才会是回文串。
上文的所有讨论是建立在子串长度大于 2 的前提之上的,我们还需要考虑动态规划中的边界条件,即子串的长度为 1 或 2。对于长度为 1 的子串,它显然是个回文串;对于长度为 2 的子串,只要它的两个字母相同,它就是一个回文串。因此我们就可以写出动态规划的边界条件:
- P(i,i)=true
- P(i,i+1)=(Si ==Si+1)
根据这个思路,我们就可以完成动态规划了,最终的答案即为所有 P(i,j)=true 中 j−i+1(即子串长度)的最大值。注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序。
1 | public String longestPalindrome(String s) { |
复杂度分析
- 时间复杂度:O(n^2),其中 n 是字符串的长度。动态规划的状态总数为 O(n^2),对于每个状态,我们需要转移的时间为 O(1)。
- 空间复杂度:O(n^2),即存储动态规划状态需要的空间。
好了,今天的文章就到这里,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力。